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T
he chemical universe is huge and is enlarging every day: the
CAS registry includes more than 50 million of chemicals, of
which nearly 38 million are commercially available and
almost 280,000 are regulated and overall listed in the

various inventories (for instance the EU-EINECS, US-EPA TSCA,
Canada-DSL). New chemicals are being developed continuously
(thousands each year), but reports on physico-chemical properties,
and biological activities are more slowly produced. While the degree of
knowledge for “new” chemicals could be acceptable, the same can-
not be stated for the majority of the “existing” chemicals in commer-
ce, even for the High Production Volume (HPV) compounds; thus,
there is generally a lack of sufficient information publicly available in
order to assess and control these substances effectively. The problem
of lack of data and slow assessment procedures is huge: we know a
lot about a few chemicals (<5%), but we have very little information on
the properties and risks of most (>95%) chemicals.
In Europe the new legislation REACH (Registration Evaluation Autho-
rization and Restriction of Chemicals) [1] creates a single system for
the so-called “existing” and “new” substances (respectively, around
100,000 chemicals, put on the market before 1981 and around 5,000

chemicals introduced after 1981) to obtain from industries relevant
information on properties and activities of all the commercialised sub-
stances and to use that data to manage them safely. The principal aim
is to ensure greater safety in the manufacture and use of chemicals, a
high level of protection of health and the environment.
REACH reverses the responsibility for providing the necessary infor-
mation and taking effective risk management measures to industry,
both producers and importers of substances, rather than the public
authorities, as in the past. REACH requires manufacturers and
importers to gather comprehensive information on properties of their
substances produced or imported in volumes over 1 tonne per year,
into different deadline dates, and to submit the necessary information
to demonstrate their safe use in a registration dossier to the European
CHemicals Agency (ECHA). Public authorities will examine registration
dossiers and substances of concern and they will also scrutinise all
proposals for animal testing to keep it to the minimum absolutely nec-
essary. Use-specific authorisations will be required for Substances of
Very High Concern (SVHC), that cause cancer, mutations or reproduc-
tion problems (CMRs, including endocrine disruptors ED), or that high-
ly accumulate and persist in our bodies and in the environment (vPvB)
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INTRODUCTION
TO THE NEED

OF ALTERNATIVE METHODS
IN REACH
In vitro and in silico methods are foreseen in the EU regulation REACH, to prioritize more dangerous compounds, to focus expensive
experiments, by reducing animal tests and to fill the data gaps. A brief historical introduction of QSAR modelling and the importance
of model validation according to the OECD principles for reliable predictions is presented.
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or are also toxic (Persistent Bioaccumulative and Toxics, PBT). Autho-
risation will be granted only to companies that can show that the risks
are adequately controlled or if social and economic benefits outweigh
the risks and suitable alternative substances do not exist. This will
encourage substitution of unsafe substances by safer ones.
Two levels of actions can be identified in relation to the highest con-
cern chemicals: a) the need of tools for their identification and prioriti-
zation, and b) the stimulus for the research and production of safer
alternatives. It is immediately evident the enormous efforts required to
the industry in order to fill the huge gap in data availability into short
terms and also in order to design safer alternative chemicals.
Costs, numbers of test animals, speed of the process, and sharing the
data are all important issues. It is clear that there is a need to increase
the efficiency, cost effectiveness and focus of the risk assessment
process, while reducing the current reliance on animal tests.
It is now widely acknowledged that the most efficient way to carry out
hazard and risk assessments of large numbers of chemicals, while
reducing costs to industry and minimising animal testing, is to obtain the
necessary information by means of Intelligent Testing Strategies (ITS).
Intelligent testing strategies are integrated approaches comprising of
multiple elements aimed at speeding up the risk assessment process
while reducing costs and animal tests:
1) in vivo and in vitro experimental tests;
2) computational methods (SARs, QSARs and biokinetic models,
Read-across) and chemical categories;

3) exposure assessment.
The ultimate aim of all these approaches is to obtain reliable informa-
tion on the (toxic) properties of chemicals with minimal use of animals.
To ensure that animal testing is kept to the strict minimum general
rules are also set out:
a) for the use of existing information (data sharing);
b) for waiving of tests (omitting them if they are not required because
of their use or it is not technically possible to carry them out);

c) for the development of alternative in vitro tests;
d) for in silico techniques such as (Q)SARs (Quantitative Structure-
Activity Relationship) and read across.

New animal tests are only required when it is not possible to provide
the information in any other permitted way. The underlying strategy is
the 3R approach: Reduce, Refine, Replace.
The development and use of alternative methods (e.g. QSAR, etc.) for
the assessment of hazards of substances is expressly promoted and
inserted in REACH articles (1, 40 and 47). In particular, QSAR models
are cited in REACH text in Art. 13, 138, in Annex III, VI-XI.
The use of predictive QSAR models is suggested:
1) to highlight dangerous chemicals;
2) to support priority setting of chemicals and to focus the experimen-
tal tests;

3) to fill in data gaps for classification and labelling and for risk assess-
ment;

4) to design safer alternative compounds.

Computational methods: QSAR approach
It is now widely acknowledged that the most efficient way to carry out
hazard and risk assessments of large numbers of chemicals, while
reducing costs to industry and minimising animal testing, is to obtain
the necessary information by means of computational or “in silico”
methods like QSARs. QSARs are mathematical models that relate a
numerical measure of chemical structure (a molecular descriptor) to a
chemico-physical property or to a biological effect (e.g. a toxicological
endpoint) and that can be used to predict the unknown activities and
properties of molecules.
Computational QSAR models validated according to the recent OECD
principles [2] can be employed to pre-screen the compounds, by pre-
dicting their activity, and to examine with laboratory tests only those
compounds that possess biological activity according to the QSAR
models. Moreover, QSAR models can also be employed by chemical
industries in the development of new safer chemicals, without danger-
ous properties, as it is widely applied since long time in pharmaceuti-
cal companies for drug design.
QSARs are based on the assumption that the structure of a molecule
(i.e. its geometric, steric and electronic properties) must contain the
features responsible for its physical, chemical, and biological proper-
ties, and on the ability to represent the chemical by one, or more,
numerical descriptor(s). By QSAR models, the biological activity (or
property, reactivity, etc.) of a new or untested chemical can be inferred
from the molecular structure of similar compounds whose activities
(properties, reactivities, etc.) have already been assessed. The QSPR
(Quantitative Structure-Property relationship) acronymous is used
when a property is modeled.
It has been nearly 40 years since the QSAR modelling firstly was
used into the practice of agrochemistry, drug design, toxicology,
industrial and environmental chemistry . Its growing power in the fol-
lowing years may be attributed also to the rapid and extensive devel-
opment in methodologies and computational techniques that have
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allowed to delineate and refine the many variables and approaches
used in this modelling approach.
QSAR modelling is born in toxicology field. In 1863, Cros noted that a
relationship existed between the toxicity of primary aliphatic alcohols
and their water solubility. This relationship demonstrated the central
axiom of structure-toxicity modelling - the toxicity of substances is
governed by their properties, which in turn are determined by their
chemical structure. Therefore, there are interrelationships between
chemical structure, properties, and toxicity.
At the turn of the 20th century, Meyer and Overton [3, 4] independent-
ly suggested that the narcotic (depressant) action of a group of organ-
ic compounds paralleled their olive oil/water partition coefficients. In
following years on the physical organic front, the seminal work of
Hammett gave rise to the “σ-ρ” culture [5,6] in the delineation of sub-
stituent effects on organic reactions, while Taft devised a way for sep-
arating polar, steric, and resonance effects and introducing the first
steric parameter, ES [7] .
There is a consensus among current predictive toxicologists that Cor-
win Hansch is the founder of modern QSAR. In the classic article [8] it
was illustrated that, in general, biological activity for a group of ‘con-
generic’ chemicals can be described by a comprehensive model:

Log 1/C50 = aπ + bε + cS + d (1)

in which C, the toxicant concentration at which an endpoint is mani-
fested (e.g. 50% mortality or effect), is related to a hydrophobicity
term, π, (this is a substituent constant denoting the difference in
hydrophobicity between a parent compound and a substituted ana-
log, it has been replaced with the more general molecular term the log
of the 1-octanol/water partition coefficient, log Kow), an electronic

term, ε, (originally the Hammett substituent constant, σ) and a steric
term, S, (typically Taft’s substituent constant, ES).
At present, the QSAR science, founded on the systematic use of
mathematical models and on the multivariate point of view, is one of
the basic tools of modern drug and pesticide design, has an increas-
ing role in environmental sciences and is suggested in REACH.
QSAR models exist at the intersection of chemistry, statistics and
biology, in toxicological studies. The development of a new QSAR
model requires these three components: 1) a data set that provides
experimental measures of a biological activity or property for a group
of chemicals; 2) molecular structure and/or property data (i.e. the
descriptors, variables, or predictors) for this group of chemicals; and
3) statistical methods, to find the relationship between these two
data sets.
The limiting factor in the development of QSARs is the availability of
high quality experimental data. In QSAR analysis, it is imperative that
the input data be both accurate and precise to develop a meaningful
model. In fact, it must be realized that any resulting QSAR model that
is developed is only as valid statistically as the data that led to its
development.
Data used in QSAR evaluations are obtained either from the literature
or generated specifically for QSAR-type analyses. These data can
consist of congeneric series of chemicals (local QSAR models) or
assure structural diversity even within a chemical class (general
QSAR models). This diversity has allowed the generalization of more
robust QSARs, applicable in an extended way. A structure- activity
model is defined and limited by the nature and quality of the data
used in model development and should be applied only within the
model’s applicability domain.
The ideal QSAR should: (1) consider an adequate number of mole-

cules for sufficient statistical representation, (2) have a wide
range of quantified end-point potency (i.e. several orders of
magnitude) for regression models or adequate distribution
of molecules in each class (i.e. active and inactive) for clas-
sification models, (3) be applicable for reliable predictions of
new chemicals (validation and applicability domain) and (4)
allow to obtain mechanistic information on the modelled
end-point.
Chemical descriptor(s) include empirical, quantum chemical,
or non-empirical parameters. Empirical descriptors may be
measured or estimated and include physico-chemical prop-
erties (such as for instance logP). Non-empirical descriptors
can be based on individual atoms, substituents, or the
whole molecule, they are typically structural features. They
can be based on topology or graph theory and, as such,
they are developed from the knowledge of 2D structure, or
they can be calculated from the 3D structural conformations
of a molecule.
A variety of properties have been also used in QSAR mod-
elling, these include physico-chemical, quantum chemical,
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and binding properties. Examples of molecular properties are electron
distribution, spatial disposition (conformation, geometry, and shape),
and molecular volume. Physicochemical properties include descrip-
tors for the hydrophobic, electronic, and steric properties of a mole-
cule as well as other properties including solubility and ionization con-
stants. Quantum chemical properties include charge and energy val-
ues. Binding properties involve biological macromolecules and are
important in receptor-mediated responses.
In modern QSAR approaches, it is becoming quite common to use a
wide set of theoretical molecular descriptors of different kinds, able to
capture all the structural aspects of a chemical to translate the mole-
cular structure into numbers. Different descriptors are different ways or
perspectives to view a molecule, taking into account the various fea-
tures of its chemical structure, not only mono-dimensional as the sim-
ple counts of atoms and groups, but also bi-dimensional from the
topological graph or three-dimensional from a minimum energy con-
formation. A lot of software calculates wide sets of different theoretical
descriptors, from SMILES, 2D-graphs to 3D-x,y,z-coordinates,
obtained by geometry optimization methods (MM+, AM1, ecc). Some
of the more used are mentioned here: CODESSA [9], MolConnZ [10],
and DRAGON [11]. It has been estimated that more than 3,000 mole-
cular descriptors are now available, and most of them have been sum-
marized and explained [12-14]. The great advantage of theoretical
descriptors is that they can be calculated homogeneously by a defined
software for all chemicals, even those not yet synthesized, the only
need being a hypothesized chemical structure, thus they are repro-
ducible.
Modelling methods used in the development of QSARs are of two
types in relation to the modelled response: a potency of an end-point
(a defined value of EC50) or a category/class (for instance Muta-
gen/Not mutagen).
For the potency modelling, the most widely used mathematical tech-
nique is multiple regression analysis (MRA). Regression analysis is a
simple approach that leads to a result that is easy to understand and,
for this reason, most QSARs are derived using regression analysis.
Regression analysis is a powerful means for establishing a correlation
between independent variables (molecular descriptors X) and a
dependent variable Y, such as biological activity:

Y= b + aX1 + cX2 + ... (2)

For the modelling of categories, different quantitative models of classi-
fication can be applied. A wide range of classification methods exists,
including: discriminant analysis (DA; linear , quadratic, and regularized
DA), SIMCA (Soft Independent Modelling of Class Analogy), k-NN (k-
Nearest Neighbours), CART (Classification And Regression Tree), Arti-
ficial Neural Network, Support Vector Machine, etc. In these tec-
niques, the term “quantitative” is referred to the numerical value of the
variables (the molecular descriptors) necessary to classify the chemi-
cals in the qualitative classes.

It is evident from the literature analysis that the QSAR world has under-
gone profound changes since the pioneering work of Corwin Hansch,
considered the founder of modern QSAR modelling [8]. The main
change is reflected in the growth of a parallel and quite different con-
ceptual approach to the modelling of the relationships among a chem-
ical’s structure and its activity/properties.
In the Hansch approach (so called mechanistic), still applied widely
and followed by many QSAR modelers, molecular structure is repre-
sented by only a few molecular descriptors (typically log Kow, Ham-
mett constants, homo/lumo, some steric parameters) selected per-
sonally by the modeler and inserted in the QSAR equation to model a
studied end-point. Alternatively, in a different approach (so called sta-
tistical) the chemical structure is represented, in the first preliminary
step, by a large number of theoretical molecular descriptors which are
then, in a second step, selected by different chemometric methods
(such as for instance evolutionary techniques, Genetic Algorithms, etc)
as the best correlated with response and included in the QSAR model
(the algorithm). Thus, descriptor selection is performed with the final
and crucial aim to maximize, as an optimization parameter, the predic-
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tive power of the QSAR model, as the real utility of any model is con-
sidered its predictivity.
In fact, the first aim of any modeler should be validation for the predic-
tive application of the QSAR model, for both the mechanistic approach
and the statistical one. The famous “Kubinyi Paradox” [15] , empha-
sized also by Tropsha et al. in their famous papers: Beware of Q2 [16]
and The Importance of being Earnest [17] is that: The “best fit” mod-
els are not the best ones for prediction! In fact, a QSAR model must,
first of all, be a real model, robust and predictive, to be considered a
reliable model [18] ; only a stable and predictive model can be useful-
ly interpreted for its mechanistic meaning, even so this is not always
easy or feasible.

Validation and reliability of QSARs
Obviously, to meet the requirements of the REACH legislation it is
essential to use (Q)SAR models that produce reliable estimates, i.e.,
validated (Q)SAR models. QSAR model validation has been recog-
nized by specific OECD expert groups as a crucial and urgent point in
recent years, and this has led to the development, for regulatory pur-
poses, of the “OECD principles for the validation of (Q)SAR models” [2]
.Thus, reliable QSAR model must be associated with the following
information: 1) a defined endpoint; 2) an unambiguous algorithm; 3) a
defined domain of applicability; 4) appropriate measures of goodness-
of-fit, robustness and predictivity; 5) a mechanistic interpretation, if
possible.
The need for descriptor interpretability depends on the application, as
a validated mathematical model relating a target property to chemical
features may be all that is necessary, particularly when predicted data
are needed for screening of large libraries of chemicals, though it is
obviously desirable to attempt some explanation of the ‘mechanism’
in chemical terms [19, 20].
It needs to be recognised that the predictions, made by estimation
techniques, cannot be more reliable than the experimental data they
are trying to predict and that the error of predicted data are generally
of the experimental error order. Nevertheless, a (regulatory) decision
based on the use of a reliable model (developed by using high quality
data and verified by statistical validation) will be more useful than a
decision based on poor quality experimental data (animal tests).
Secondly, the answer depends on the endpoint. Estimation methods
are very reliable for most of the physicochemical endpoints. They are
reliable for many of the environmental endpoints for an important part
of the chemicals universe. They are less reliable for complex toxicolog-
ical endpoints related to human health, but highly useful for priority
setting purposes.
Thirdly, these tools can only be applied by experts, knowing the
applicability domains of these tools and their limitations. In other words
for these tools it is important to know what they are doing, and more
importantly, what you should not do. The message is: leave their use
to experts!.
A common criticism of (Q)SARs, when considered in isolation, is that

they are only useful for making reliable estimations for limited classes
of chemicals (the so-called “applicability domain”). For this reason, an
important issue in the validation of a (Q)SAR model is the establish-
ment of its applicability domain. The important question is not only
whether a given (Q)SAR model is valid, but for which classes of chem-
icals it can be used to make reliable predictions. In vitro tests are also
associated with applicability domains which define limitations in their
applicability to classes of chemicals.
It will not be possible to completely replace animal tests in REACH, but
if different types of alternative approaches are combined in an intelli-
gent manner, the number of animal tests required can be reduced sig-
nificantly. (Q)SARs and in vitro tests will be useful as partial replace-



ments of animal tests. In particular QSAR methods can be applied for
screening chemicals and prioritizing the more dangerous for experi-
mental tests; additionally, can be applied in the design of safer alter-
native chemicals. No method other than QSAR is applicable to chem-
ical design and to detect a priori, only from the drawn structures, the
property/activity of any compound.
A lot of commercial software are available: in those packages QSAR
models have been already developed by QSAR modellers and the
user can just press a button for obtaining a predicted value of the
requested endpoint for a requested chemicals. However, the great
danger is that the quality of the obtained prediction is not always clear
and the reliability of the data are not guarantee. Also the application of
commercial software should be limited to QSAR experts.

QSAR experts for REACH in Italy
In Italy, few groups of QSAR experts are involved in scientific works
and projects for the development of QSAR models, validated
according to the OECD principles [2], with the aim to be applicable

in REACH. In particular: the Benfenati group in Mario Negri Institute
(Milan) has been published many papers on this topic [as an exam-
ple 21], has been involved in different EU-Projects, more recently in
CAESAR [22]; Benigni in Istituto Superiore di Sanità (Rome) has a
very long activity on the QSAR modelling of chronic effects (carcino-
genicity, mutagenicity [23]) and is currently involved in a FP7-EU pro-
ject for REACH OpenTox [24]; Gramatica in Insubria University has
published a lot of papers on QSAR models developed according to
the OECD principles of validation [18] (mainly on POPs [25] and
Endocrine Disruptors (EDs) [26]), she is now leader of the QSAR
workpackage in the FP7-EU project for REACH CADASTER [27];
Todeschini in Milano Bicocca is mainly interested in molecular
descriptors [14] and modelling software [11]. He is now coordinator
of a PRIN07 project, with Gramatica, on the development of QSAR
models for REACH focused on PBTs and EDs. The identification and
assessment of PBTs and EDs, on which topics Insubria group has a
long activity, is an important task under REACH, as they are includ-
ed in the Authorization procedure.
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RIASSUNTO
La necessità di metodi alternativi per il REACH
I metodi in vitro ed in silico sono previsti nella legislazione europea REACH per prioritizzare i composti più pericolosi, per focalizzare esperimenti costosi, riducendo i test su

animali, e per colmare la mancanza di dati. Viene qui presentata una breve introduzione storica sulla modellistica QSAR e l’importanza della validazione di tali modelli secondo i

principi OECD, per ottenere dati predetti attendibili.


