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Science and Technology

A ir quality management in urban ambient is a very difficult
task [1]. Prominent emission sources are the vehicular

traffic [2] and, during the cold season, domestic heating. In-
dustrial point emission could also have high impact on local
and regional scale. The increase in periods of dry weather
and the increased vehicular traffic lead to severe photochemi-
cal smog episodes in summer and high levels of CO, NOx,
BTEX, PM10 and other traffic-related primary pollutants during
winter. This last condition happened in the winter 2001-2002
in several major cities of the North Italy.
Among the quoted pollutants, PM, and especially the fine
fractions PM10 and PM2.5 can have very adverse effects on
human health. PM10 and, in the Usa, PM2.5 are considered
very important indicators of urban air quality, and included in
regulatory policies [3]. Usually PM is grouped in the three so-
called modes: ultrafine, fine, and coarse [4]. Coarse particles
(>2.5 µm) are mainly of crustal origin and of scarce toxicologi-
cal interest. The ultrafine particles (<0.12 µm) are chemically
formed or condensed from hot vapors (e.g. diesel exhaust)
and coagulate into fine particles. Defined as having an aero-
dynamic diameter less than 2.5 µm, the ultrafine and fine par-
ticles are predominantly of anthropogenic origin (primary and
secondary). They vehiculate many toxic and mutagenic or-
ganic compounds [5], and are deposited with high probability
in the lower part of the respiratory system. Thus they have the
largest toxicological impact. Several recent toxicological stud-
ies have consistently reported increased daily mortality asso-

ciated with the exposure to fine particulate air pollution [6, 7].
Different vehicle categories and heating systems, also in rela-
tion to their maintenance, have very different impact on air
quality either for the direct emission of particulate or for the
particular organic pollutants that are emitted. Nowadays, zero
emission vehicles (ZEV, mainly electrical cars) with good fuel
distance and competitive costs are not yet available. More-
over, an imposed sudden change of vehicle characteristics
will have a high societal impact. 
Corrective actions with low societal impact and good improve-
ments of air quality should be taken after a careful analysis of
the various vehicular emission sources, and their influence on
the whole urban air quality.
This work reports the methodological approaches that can be
used, and a preliminary estimation of the impacts that differ-
ent vehicle category have on the organic fraction of airborne
particulate matter sampled nearby a heavy traffic road. The
vehicular source apportionment was assessed through a
chemical mass balance model.

Air quality models for source apportionment

Regulatory actions and policies to improve the air quality can
be formulated when good estimates of the impact of source
emissions are known. To achieve this task, reliable air quality
models are required.
The source apportionment can be performed in two comple-
mentary ways. The traditional approach is the dispersion mod-
eling [8, 9], in which a pollutant emission rate and meteorologi-
cal information are input to a mathematical model that dispers-
es (and may also chemically transform) the emitted pollutant,
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generating a prediction of the resulting pollu-
tant concentration at a point in space and time.
The inputs may be measured quantities, al-
though they need not to be. In this case the
modeling is a simulation of different scenarios,
depending on source positions and emission
rates. Dispersion models require as inputs me-
teorological data, land use and landscape pat-
terns in order to obtain reliable results. Disper-
sion models can be local, modeling pollutant
dispersion due to traffic in limited urban zones
(street canyons), or regional, modeling 3D dif-
fuse and/or point sources with complex euler-
ian or lagrangian approaches in order to solve
the fluid dynamic equations, eventually with
chemical processes. For a review see the web
site of the Italian National Agency for Environ-
mental Protection (Agenzia Nazionale di Pro-
tezione Ambientale, Anpa) [10].
The alternative approach is the receptor mod-
eling [11-14], which is a mathematical proce-
dure for identifying and quantifying the
sources of ambient air contaminants at a re-
ceptor (ambient air, airborne particulate mat-
ter etc.) primarily based on the concentration
measurements at that receptor. The concen-
tration measurements can involve chemical or
physical properties characteristic of particular
source emissions.
Receptor modeling is diagnostic, whereas dis-
persion modeling is also prognostic. More-
over, receptor modeling is directly based on
measurements and cannot be performed with-
out them. It does not need meteorological and
landscape data, and depending on the mathe-
matical implementation, it does not require
emission databases. While source apportion-
ment embraces in principle both modeling ap-
proaches, in the common usage it is often tak-
en as synonymous of receptor modeling.
The first article published on receptor model-
ing dates back to 1972 [15]. There Frielander
described the first chemical mass balance re-
ceptor model. Whereas dispersion models
have been applied mainly to gaseous pollu-
tants, which are by far simpler to model
through fluid dynamics and chemical reactivity
than particulate matter, the receptor model
was originally applied to apportion source
contributions to atmospheric aerosol samples.
The receptor models may be classified as sin-
gle-sample or multivariate. The first type of
modeling analysis is performed independently
on each available sample. The simplest exam-
ple of this is the “tracer element or compound”
method, in which a particular chemical species
is known to be uniquely associated with a spe-
cific source. Under this approach the total am-
bient mass impact of the source may be esti-
mated by dividing the measured ambient con-
centration of the compound by the com-
pound’s abundance in the source’s emissions.
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Table 1/1 - Compounds identified through GC-MS analysis in the organic
extracts (dicloromethane) of PM from receptor and sources

# RT (min.) Compound MW Isomer

1 19.05 1,2,3-Trimethyl-1H-indene 158
2 19.06 Acenaphthene 154
3 19.18 4-methoxy-3-methyl-1(3H)-isobenzofuranone 178
4 19.32 1,3-Dimethyl-2-butenyl-benzene 160
5 19.39 3-Hydroxy-4-methoxy-benzaldehyde 152
6 19.79 Dimethylnaphthalene 156 B
7 19.82 Dimethylquinoline 157
8 20.34 Methyl hydroxybenzoate 152
9 20.45 Diterbutylbenzoquinone 220
10 20.53 Acenaphthylene 152
11 20.78 Dimethoxy-dimethylbenzene 166
12 20.83 Methyl-1-1’-biphenyl 168 A
13 20.87 Methyl-1-1’-biphenyl 168 B
14 21.02 Methyl-1-1’-biphenyl 168 C
15 21.08 1,1-Bis(1-dimethylethyl)-4-methyl-phenol 220
16 21.17 1-Naphtaldehyde 156
17 21.18 Diterbutylphenol 206
18 21.23 1-Naphthol 144
19 21.30 Hydroxybiphenyl 170
20 21.37 Dibenzofuran 168
21 21.39 Ethyl ethoxybenzoate 194
22 21.40 1,2-bis-(phenyl)-ethane 182
23 21.41 Fluorene 166
24 21.62 p-Nitrophenol 139
25 21.84 Trimethylnaphthalene 170
26 22.35 Dimethyl-1-1’-biphenyl 182
27 22.78 1-Phenyl-1-methyl-2-phenyl-etane 196 A
28 22.86 1-Methyl-3-[4-methyl-phenyl-methyl])benzene 196
29 22.93 Hydroxybenzoic acid 138
30 22.98 1-Phenyl-1-methyl-2-phenyl-etane 196 B
31 22.99 Benzophenone 182
32 23.11 1-Methyl-3-[4-methyl-phenyl-methyl])benzene 196 A
33 23.46 1-Methyl-3-[4-methyl-phenyl-methyl])benzene 196 B
34 23.65 Acenaphthenone 168
35 23.74 1-Methyl-3-[4-methyl-phenyl-methyl])benzene 196 C
36 23.92 1-Methyl-3-[4-methyl-phenyl-methyl])benzene 196 D
37 23.54 Diisopropylnaphthalene 212 A
38 23.65 Diisopropylnaphthalene 212 B
39 23.75 Diisopropylnaphthalene 212 C
40 23.93 Carboxyaldehyde-1-1’-biphenyl 182
41 24.10 Methyl-fluorene 180
42 24.09 1-Methyl-3-[4-methyl-phenyl-methyl])benzene 196 E
43 24.01 1,2,3,4-Tetraidro-9,10-dimethylanthracene 210
44 24.18 Diisopropylnaphthalene 212 D
45 24.23 Isopropyl-dimethylazulene 198
46 24.29 Benzo[b]nafto[2,3-d]tiophene 264
47 24.36 Diisopropylnaphthalene 212 E
48 24.43 Benz[a]azulene 178
49 24.47 Butyltetrahydroanthracene 238
50 24.50 9H-Fluorenone 180
51 24.52 1-Methyl-3-[4-methyl-phenyl-methyl]benzene 196 F
52 24.66 1-Methyl-3-[4-methyl-phenyl-methyl]benzene 196 G
53 24.76 3,5-Di-butyl-4-hydroxybenzaldehyde 234
54 24.82 Dibenzothiophene 184
55 24.82 Tetramethylnaphthalene 184
56 24.89 Ethylnitronaphthalene 201
57 25.01 Tetramethyl-1-1’-biphenyl 210
58 25.18 Phenanthrene 178
59 25.30 Anthracene 178
60 25.36 Methyl-benzofluorenone 196
61 25.63 Acridine 179
62 25.70 9,9-Dimethyl-9H-fluorene 194



Obviously, it is very difficult to find unique trac-
ers that have statistical stable abundance in
the source. Even if the compound is not
uniquely associated with a source of interest,
but its abundance in that source is known,
then the method can be used to provide an up-
per limit for the source’s impact. For example,
the 14C content of an ambient sample can be
used to estimate the fraction of carbon in the
sample that is biogenic.
The best-known example of single-sample re-
ceptor modeling is the chemical mass balance
(CMB). CMB model removes the need for
unique tracers of sources, but still requires
that the abundance of the chemical compo-
nents of each source (source profiles) are
known. The basic idea of CMB modeling is
that composition patterns of emissions from
various classes of sources are different
enough that one can identify their contribu-
tions by measuring concentration of many
species in samples collected at a receptor
site. The observed concentration profile of an
atmospheric PM sample would be a linear
combination of the source emission profiles,
each weighed by a source strength term [11,
13]. A software based on a CMB model to-
gether with emission inventory databases is
currently used and distributed by Us Epa [16]
for identifying and apportioning the emission
sources of airborne PM.
Multivariate receptor models [17] require the
input of data from multiple samples. They ex-
tract the source apportionment information
from all of the sample data simultaneously.
These models are able to estimate not only
the source contributions, but the source com-
positions (profiles) as well, and, in principle,
source emission profiles are no longer re-
quired. The simplest example of a multivariate
method is “tracer element/multiple linear re-
gression”. This method requires tracers that
are uniquely associated with the sources of in-
terest, but it does not require their abun-
dances to be known. Multivariate receptor
models include (a) absolute principal compo-
nent analysis, (b) specific rotation factor
analysis, (c) target transformation factor
analysis, (d) three-mode factor analysis, (e)
source profiles by unique ratios (SPUR), (f)
receptor model applied to patterns in space
(RMAPS), (g) UNMIX [18], and (h) positive
matrix factorization (PMF) [18, 19]. Most of
these models are based on factor analysis, or
the closely related principal component analy-
sis. The basic assumption of these methods is
the absence of spatial and temporal correla-
tion between emissions from different
sources. Emissions from correlated sources
(e.g. different vehicular sources, which are
highly correlated in time) are unresolved from
each other. In comparison with CMB model-
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Table 1/2 - Compounds identified through GC-MS analysis in the organic
extracts (dicloromethane) of PM from receptor and sources

# RT (min.) Compound MW Isomer

63 25.72 Anthrone 194
64 25.92 Cyclopenta [g]-2-benzopyran 258 A
65 26.02 Cyclopenta [g]-2-benzopyran 258 B
66 26.51 6,7-Dihydrocrysene 230 A
67 26.56 9-Hydroxymethyl-9H-fluorene 196
68 26.79 Phenalen-1-one 180
69 27.00 Dihydrocrysene 230 B
70 27.11 Tetramethylacenaphthylene 208
71 27.36 Dimethoxyphenylacetophenone 256
72 27.37 Dimethylnaphthothiophene 212
73 27.42 3-Methyl-2,2-Diphenylaziridine 209
74 27.58 Anthraquinone 208
75 27.86 1,1,3,3-Tetramethyl-butyl-phenol 206
76 27.55 Phenathrenol 194 A
77 28.01 Thiophenone 100
78 28.18 Phenathrenol 194 B
79 28.27 Phenathrenol 194 C
80 28.29 1-[4-(2-Phenyletenil)phenyl]-ethanone 222
81 28.32 Dimethylphenanthrene 206
82 28.71 Cyclopenta(def)phenanthrenone 204
83 28.80 1-1’-Biphenyl-1-propen-2-thiol 226
84 28.86 bis(1-Methylethyl)-biphenyl 238
85 28.86 Methylcrysene 242 A
86 28.71 Fluoranthene 202
87 28.92 2,3-Dihydro-1H-cyclopentaphenanthrene 218
88 29.15 Benzo[a]acenaphthylene 202
89 29.30 Benzo[b]acenaphthylene 202
90 29.06 Methylcrysene 242 B
91 29.50 Pyrene 202
92 29.52 Anthraldehyde 206
93 29.56 Hydroxypyrene 218 A
94 29.71 Trimethylphenanthrene 220 A
95 29.89 1,1-Diphenylcyclohexane 236
96 29.90 Hydroxypyrene 218 B
97 30.36 Diphenylcyclohexane 236
98 30.87 Trimethylphenanthrene 220 B
99 30.15 Methylpyrene or Methylfluoranthene 216 A
100 30.45 Methylpyrene or Methylfluoranthene 216 B
101 30.68 Methylpyrene or Methylfluoranthene 216 C
102 30.96 Methylpyrene or Methylfluoranthene 216 D
103 31.05 Methylpyrene or Methylfluoranthene 216 E
104 31.21 2,3,5,6,-Tetrahydro-3,3,4,5,5, 270

8-esamethyl-indecen-1,7-dione
105 31.84 Tetramethylphenanthrene 216 A
106 31.89 Benzanthrone 230
107 32.24 Tetramethylphenanthrene 234 B
108 32.39 Cyclopenta[c,d]pyrene 226
109 32.31 Benzo[a]dibenzothiophene 234
110 32.55 Tetramethylphenanthrene 234 C
111 33.00 Benz[a]antracene 228
112 33.02 Dimethylpyrene 230
113 33.05 Cyclopentapyrene or cyclopentafluoranthene 226
114 34.30 Methyl-benz[a]anthracene 242
115 35.44 Butene-2,3-bis(1-naphthyl) 308
116 35.54 2,4-Bis(1-methyl-1-phenylethyl)phenol 330
117 36.08 Benzo[a]pyrene 252
118 36.34 Benzopyrene or benzofluoranthene 252 A
119 36.76 Benzopyrene or benzofluoranthene 252 B
120 36.89 Benzopyrene or benzofluoranthene 252 C
121 37.11 Benzopyrene or benzofluoranthene 252 D
122 39.81 Benzoperilene isomer 276
123 40.66 Benzo[ghi]perylene 276
124 46.40 Coronene 300



ing, far less is understood about the behavior and validity of
these multivariate models. Criticisms have been directed at
specific models, in addition to the general criticism to the fac-
tor analysis-based models that do not make use of additional
constraints to limit the solution space.
Weaknesses of receptor models are the limited capability to
treat the formation of secondary aerosols, which is far more
important for the finer fraction of PM, and the chemical reac-
tivity of the aerosol components. In the CMB models that re-
quire source profiles, the secondary PM is introduced as a vir-
tual emission source [10-12].
Early applications of receptor modeling, especially CMB, used
elemental PM composition in order to apportion emission
sources. Actual research topics, funded by many regulatory
agencies worldwide, involve the study of the organic com-
pounds of size-fractionated PM in order to establish more de-
tailed source-receptor relationship and discover new
source/processes [8, 17, 20-27].

PM sampling extraction, fractionation, and analysis

Airborne PM was sampled at a distance of 10 meters from a
heavy-traffic urban road in Turin (C.so Massimo d’Azeglio, in
November-December 2001). An air sampling pump mod.
Charlie (TCR Tecora, Milan, Italy) was equipped with a glass-
fiber filter (Gelman Science, Ann Arbor, Michigan USA, 37-
mm diameter, pretreated at 500 °C) and operated at a sam-
pling flux of 10 Liter/min. The filter inlet was placed at a height
of 1 meter above ground. 27 samples integrated over 24
hours interval (9 a.m.-9 a.m.) have been collected.
The gas exhausts from the three vehicles, selected as repre-
sentatives of the circulating fleet (HS, LS, DE, see below),
were sampled with the same apparatus in order to character-
ize the source emission profile. The filter inlet was placed 5
cm inside the silencer. Sampling was carried out driving the
vehicle for 15 minutes in an urban ring comprehensive of the
point of air sampling.
Eleven samples of diesel exhaust have been collected due to
the generally assumed relationship between PM pollution and
the emission of diesel powdered vehicles; 5 and 3 samples
have been collected for HS and LS gasoline vehicles, respec-
tively. The 46 samples were extracted with dichloromethane
(Suprasolv, Merck) in a microwave extraction apparatus (So-
hxwave, Prolabo, France). After solvent evaporation, the ex-
tracts were fractionated on a silica gel column (Kieselgel 60,
Merck, Darmstadt, Germany, methanol washed and activated
overnight at 120 °C) to simplify the subsequent gas-chro-
matographic analysis. Five fractions from each sample were
obtained, eluting the silica gel column with: A - pentane 100%
(Suprasolv, Merck); B - pentane 70% and dichloromethane
30%; C - dichloromethane 100%; D - dichloromethane 90%
and methanol 10% (Suprasolv, Merck); E - methanol 100%.
The first fraction contains apolar compounds with scarce toxi-
cological effects (mainly alkanes), so it was discarded.
Fractions B, C, D and E, for a total of 184 fractions, after sol-
vent evaporation under gentle N2 stream, were redissolved in
1.0 ml of a solution of Chrysene D-12 (internal standard) in
dichlorometane at 20 µg/L. They have been analyzed by a
GC-MS apparatus (a TRACE GC 2000 gas-chromatograph
coupled with a GCQ ion trap mass spectrometer, Thermo-
Finnigan, Germany) equipped with a Programmable Temper-
ature Vaporizer (PTV) inlet and a DB5-MS capillary column

(30 m length, 0.25 mm I.D., 0.25 µm film thickness, J&W Sci-
entific, Koln, Germany). Instrumental conditions were: pro-
grammed temperature injection of 50 µL sample with solvent
evaporation phase (initial inlet temperature at 35 °C for 3 min-
utes with split valve open, then to 300 °C at 100 °C/sec. with
split valve closed); carrier gas He at 1 ml/min. constant flow;
initial column temperature 50 °C for 6 minutes, then to 300 °C
at 10 °C/min.; the ion trap mass spectrometer was operated
in scan mode from 29 to 400 amu, with the transfer line held
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Figure 1 - PCA analysis on diesel samples, showing that some
outliers are present

Figure 2 - Source emission profile for the diesel powered vehicle.
Numbers in the abscissa refer to different compounds (see Table
1). Compounds are ordered following increasing retention times
in the GC-MS analysis (roughly decreasing volatility). Relative
concentration values are given in pg/m3 of gas exhaust assuming
the response factor of the internal standard (Chrysene-D12)

Figure 3 - Source emission profile for the HS gasoline powered
vehicle



at 280 °C and the ion source at 200 °C. Compounds identified
with the help of Nist 98 spectral library were quantified inte-
grating the peak of the ion currents characteristic of the given
compound assuming response factors equal to that of the in-
ternal standard. Concentrations reported are thus in pg m-3

equivalent to the internal standard. Analytical data are re-
ferred to the total volume of air or exhaust sampled. Table 1
reports all the organic compounds identified on PM from the
considered vehicular sources and the receptor. The reported
quantification obviously results in incorrect concentration val-
ues for the identified compounds in both the air and exhaust
samples. A proper quantification is possible with use of re-
sponse factors for authentic standards, but it is unnecessary
to the following analysis, since analytical data concerning
sources and receptors are obtained with the same procedure,
assuring internal consistency of the entire data set.
Chemometric analyses
Using the software package Unscrambler (Camo Asa, Oslo
Norway) did elaboration of data with chemometric methods
(Principal Component Analysis, PCA, and Multiple Linear Re-
gression, MLR). This software computes PCA with a Nipals
algorithm and the MLR with a singular value decomposition
algorithm.

Source characterization

Accurate chemical mass balance estimation of source im-
pacts require accurate emission profiles of the relevant emis-
sion sources. As the Italian vehicular fleet is concerned (pas-
senger cars, 1997 data in [28], page 12), the percentage of
non catalyzed, catalyzed, diesel and GPL vehicles are 59.5,
26, 10.5 and 4%, over a total number of 31 millions vehicles.
Commercial vehicles (van, buses, and trucks) are mainly
diesel powered and amount to 3.3 millions. Motorcycles are
also of concern (7.8 millions). However, due to the sampling
season (winter), they were not considered.
To date no emission data concerning the organic fraction of
PM from different vehicular sources are available in Italian
emission inventories [28, 29]. Average mass emission factors
for PM are reported only for diesel vehicles (average value of
0.4-1.2 g/kg of fuel burned), with no indication on the organic
and elemental carbon contents ([28], page 89). It is generally
recognized that diesel powered vehicles emits a PM mass 20-
30 times greater than that emitted from gasoline vehicles [30].
However, diesel PM contains a greater quantity of elemental
carbon with respect to gasoline vehicles. Organic carbon as-
sociated to diesel PM is composed mainly of 2-4 rings PAH,
whereas gasoline vehicles emit greater quantities of 5-6 rings
PAH (benzopyrenes, benzo[ghi]perylene, indeno[cd]pyrene,
coronene). However, emission factors for non-methane or-
ganic compounds are larger for gasoline vehicles, particularly
when pre-1992 vehicles are considered [28].
The above considerations show that the choice of representa-
tive vehicular sources is not so straightforward. Moreover, the
percentages of gasoline vehicles, which are catalyst
equipped, should be significantly increased since 1997. In this
preliminary study three vehicular sources were considered
suitable to study the contribution of organic pollutants to PM,
to avoid excessive number of measurements. The three
source are a low maintenance high emitter gasoline car, com-
plying ECE 15/04 norm (pre 1984, high smoker, HS, repre-
sentative of low maintenance and non catalyzed vehicles),
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Figure 4 - Source emission profile for the LS gasoline powered
vehicle

Figure 6 - Biplots of sample loadings (pink) and scores (blue)
from the principal component analysis among the receptor
samples. See the text for details

Figure 5 - Biplot of sample loadings (pink) and scores (blue) from
the principal component analysis among the averaged emission
profiles of the vehicular sources. See the text for details

Figure 7 - Receptor profile concerning the extractable organic
fraction of the airborne particulate matter



and two normal emitters, namely a diesel engine van (DE,
catalyst equipped, complying 94/12/ECC norm) and a gaso-
line car (complying 94/12/EEC, low smoker, LS). The DE
emitter is taken as representative of both light duty and heavy
duty diesel vehicles (scarce in the urban traffic).
The raw data from 11 diesel samples, 5 HS gasoline and 3
LS gasoline sample have been preprocessed by PCA to de-
tect eventual samples and variables (chemical compounds)
outliers. An example of the procedure is shown in Figure 1,
where samples diesel 19, 13, 16, 15 are outliers. Including
these samples the explained variance is 72% and 11% by the
first two PCs, while without them the explained variance is
88% and 5%, respectively. Thus the experimental set was re-
duced to 7 diesel samples. Since all the 7 samples are statis-
tically significant, their values have been averaged. The emis-
sion profile of DE emitter is reported in Figure 2.
The same data preprocessing was carried out on gasoline
samples. The 5 HS samples are all statistically homogeneous
and significant (explained variance 85% and 8% by PC1 and
PC2, respectively). The same holds for the 3 LS samples (ex-
plained variance 84% and 12% by PC1 and PC2, respective-
ly). Since all the samples are statistically significant, their val-
ues have been averaged. The emission profiles of HS and LS
emitters are reported in Figure 3 and 4. It is worth of note
that: i) the gasoline HS emitter shows concentration levels of
particle-phase organic compounds 10-40 times and 5 times
the levels found on PM from gasoline LS and diesel emitters,
respectively; ii) emission profiles from gasoline LS and diesel
vehicles are quite different, the first being characterized by 5-
6 ring PAHs, methylchrysenes and hydroxypyrenes, whereas
the second contains almost no 5-6 ring PAHs and contains
phenanthrene, methylated phenantrenes and pyrene accord-
ing to [29]; iii) the emission profile of the gasoline HS seems
to be a mix of the preceding two. These emission profiles are
also important in the evaluation of the toxicological impacts of
these PM sources: some five ring PAH (e.g. benzo[a]pyrene)
show high indirect mutagenic activities and are recognized as
human carcinogens [3]. The above considerations are con-
firmed by a PCA analysis on the three emission profiles. The
results (score and loading plots) are reported in Figure 5. As
expected, on the two first PCs the gasoline LS and the diesel
emitters show poor correlation. The DE and HS emitters show
correlation. The score plot of the compositional variable sub-
stantiate the observations on the emission profiles, confirming
that compounds noted as tracer of diesel (high scores on
PC1) are different from gasoline LS (high scores on PC2).The
PCA analysis confirms, by a statistical argument, the exis-
tence of significant differences on the two source profiles, as-
suring the possibility to differentiate their contributions on the
receptor. Moreover, the number of compositional variables
could be reduced, because the discriminating variables are

those having high scores on
one of the two PCs. 
This further reduction was not
carried out.

Receptor characterization
and estimation 
of source impacts

The receptor position, near
an heavy traffic urban road,

together with the typical winter microclimate assures that
prominent impacts on the sampled PM come from vehicular
traffic. Contribution from other sources, either traffic related or
not (industrial, domestic heating, secondary PM, natural emis-
sions), could not be excluded.
The raw data from 27 air samples have been preprocessed
by PCA to detect eventual samples and variables (chemical
compounds) outliers. The raw processing is reported in Fig-
ure 6 left. The samples except sample air-31 are all signifi-
cant, but some compounds are outl iers, namely
benzo[b]nafto[2,3-d]tiophene, dimethoxyphenylacetophenone,
benz[a]azulene, 1-[4-(2-phenyletenyl)phenyl]-ethanone, two
isomers of cyclopentapyrene (MW 226), 2,3-bis(1-
naphthyl)butene, butyltetrahydroanthracene. Thus the experi-
mental set was reduced to 116 variables. Since from Figure 6
right all the samples and variables are statistically significant,
their values have been averaged. The receptor profile (air) is
reported in Figure 7. Gas phase concentrations of the parti-
cle-phase organic compounds identified are roughly 500-
15,000 times lower than the concentration levels found in the
source gas exhausts. If the compounds on the receptor are
totally derived from the selected sources, this range of con-
centration ratios gives an estimate of the dilution factor of the
source gas exhaust at the receptor.
At a first glance the receptor profile slightly differs from the
source profiles in the distribution of high molecular weight
compounds (5 ring PAHs) and in the first 20 compounds (high
volatility). As the high molecular weight compounds are con-
cerned, this can be a sampling artifact, due to the longer sam-
pling period for the receptor samples (24 hours) with respect
to the emitter samples (15 minutes). Alternatively, the high
molecular weight compounds are obviously more efficiently
adsorbed on PM and the lighter compounds are best dis-
persed in the vapor phase and concurrently can be transport-
ed from other locations. The source profile that better corre-
spond to the high MW profile is that of the HS emitter. This
implies that toxicity of PM is not directly related to its major
emission sources (DE), but to compounds that are emitted by
high smoker’s vehicles.
This analysis is confirmed by MLR analysis of sources and re-
ceptor averaged data. The relationship between the receptor
variable values (vector of concentrations in air Y) and the vec-
tors of variable values (Xi) associated to the sources i is:

Y = bo + Σi bi Xi (1)

where bo is the part of the receptor variables not modeled by
Xi. bo is a contribution of other sources, either point sources
(other component of the vehicular fleet distribution), or area
and volume sources like those that led to secondary pollu-
tants and aerosols. MLR analysis according to Eq. 1 leads to
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Table 2 - MLR analysis summary of the source and receptor model calculation 
according to Eq. 1

Source bi p Averaged values (M) bi normalized bi ×M normalized

bo 134.2 0.000 - 43.0%

Gasoline HS 4.97×10-5 0.000 3.20×106 14.6% 49.6%
Gasoline LS 1.46×10-4 0.48 3.94×104 58.6% 1.7%
Diesel 4.11×10-5 0.44 2.53×105 25.8% 5.7%



the values of parameter reported in Table 2.
The p-value measures the probability that a parameter esti-
mated from experimental data should be as large as it is, if
the real (theoretical, non-observable) value of that parameter
were actually zero. Thus, p-value is used to assess the signif-
icance of observed effects or variations. The usual limit used
in the interpretation of a p-value is 0.05 (or 5%). If p-value
<0.05, the observed effect is not due to random variations.
Table 2 shows that only the HS emitter and the unknown
sources are statistically significant. Surprisingly the HS contri-
bution to the air pollution is more significant that the diesel
emission. Anyway, observing that the a-dimensional bi values
are the volume fractions of the exhaust gases in the urban air,
the inverse of their sum gives the dilution factor (DF). 
Such a calculation led to DF = 3,850. This means that along
an urban road, actually at the sampling point, one breaths the
equivalent PM present in 1 liter of gas exhaust diluted to
roughly 4 m3. The ratio of bi to their sum is equivalent to the
fraction of volume for emission of the different sources. Al-
though only for the HS source the data are statistically signifi-
cant, the values reported in Table 2 are grossly consistent
with the vehicular fleet distribution. In fact diesel vehicles ac-
count for 12-15% and LS are the majority of the circulating
fleet [29].
The average concentration values for each sources multiplied
by the corresponding volume fractions gives the average
mass of each pollutant in the urban air attributable to a specif-
ic source i. The normalization over the total mass are report-
ed in the last column of Table 2. About 50% of the organic
compounds adsorbed on PM are due to HS vehicles. This
value has high statistical significance.
Although values for diesel and LS sources are not statistically
significant, the values are consistent with the previous obser-
vations. Although the percentages of DE cars in the vehicular
fleet is 15% and they mostly contributed to the total PM load
of urban air, their contribution to the amount of organic com-
pounds adsorbed on PM is only about 6%.
Unfortunately, the other half of mass contribution is due to un-
known sources. This can be due to limited number of emitter
chosen and to secondary pollutant formation, on which further
studies are under development worldwide [21-27].
Although limited in their statistical significance, these results
show: i) the approach outlined in this paper could be conve-
niently used to model and apportion vehicular source impacts
on urban air quality; ii) further research work is needed to
model, classify and identify other relevant pollution sources,
including domestic heating and industrial sources; iii) the re-
sults of such studies could be beneficial a) to regulatory poli-
cies for pollution control and abatement, and b) to properly
tune the actions for limiting severe case of urban air pollution,
as air quality indicators, traffic limitation to selected classes of
cars, more efficient control on emissions [32], and increased
vehicles fleet turnover.
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